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Extension of level-spacing universality
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In the theory of random matrices, several properties are known to be universal, i.e., independent of the
specific probability distribution. For instance, Dyson’s short-distance universality of the correlation functions
implies the universality ofP(s), the level-spacing distribution. We first briefly review how this property is
understood for unitary invariant ensembles and consider next a HamiltonianH5H01V, in which H0 is a
given, nonrandom,N3N matrix, andV is an Hermitian random matrix with a Gaussian probability distribu-
tion. The standard techniques, based on orthogonal polynomials, which are the key for the understanding of the
H050 case, are no longer available. Then using a completely different approach, we derive closed expressions
for then-point correlation functions, which are exact for finiteN. Remarkably enough the result may still be
expressed as a determinant of ann3n matrix, whose elements are given by a kernelK(l,m) as in the
H050 case. From this representation we can show that Dyson’s short-distance universality still holds. We then
conclude thatP(s) is independent ofH0. @S1063-651X~97!06207-7#

PACS number~s!: 05.45.1b, 05.40.1j
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I. INTRODUCTION

Many years ago Wigner@1# introduced the level-spacin
probability distributionP(s), in his discussion of nuclea
energy levels. The exact form ofP(s) was found later in the
theory of random matrices for the Gaussian unitary ensem
~GUE! @2–4#. This level-spacing probability distribution
P(s) was empirically found to be universal in many differe
cases, for instance, non-Gaussian probability distribution
band matrices~in which case the measure is not unitary i
variant!, and even for problems of ana priori different na-
ture, such as the level spacing of the zeros of the Riem
z function @2,5,6#, which is known to coincide with that o
the GUE.

In Sec. II, we first review how the universality ofP(s)
has been derived for non-Gaussian unitary invariant
sembles, in which the probability measure is given by

P~H !5
1

Z
e2N Trf ~H !, ~1.1!

where f (x) is an arbitrary polynomial. One first integrate
out the unitary group in order to obtain a probability dist
bution for the eigenvalues ofH. It is then easy to show tha
then-point function may be written as ann3n determinant;
the matrix elements of this determinant are given by a ke
expressed in terms of orthogonal polynomials with respec
the weight exp@2Nf(x)#. Then the understanding of the re
evant asymptotic behavior of these polynomials at large
der allows one to prove the short-distance universality of
kernel. From there one can derive the universality ofP(s) in
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the scaling limit in whichN goes to infinity, the distancex
between two neighboring eigenvalues goes to zero,
s5Nx is held fixed.

In the third section we consider a Hamiltonian which
the sum of a given deterministic partH0 and of a random
potential V with a Gaussian probability distribution. Th
measure is not unitary invariant, but one can still write t
probability distribution for the eigenvalues ofH through the
well-known Itzykson-Zuber integral@7#. Generalizing a
method introduced by Kazakov@8# for the density of eigen-
values, we write a representation of then-level correlation
function, in terms of an exact and explicit integral over 2n
variables. Then one discovers that an amazing algeb
structure allows one to express again thisn-point function in
terms of a determinant of ann3n matrix. The matrix ele-
ments are given by a kernel which has an explicit repres
tation as an integral over two variables. In a previous pa
@9#, we had already discussed the two-level correlation fu
tion of this Hamiltonian through the same method, and
had shown that the behavior of this correlation function
indeed universal, i.e., independent of the HamiltonianH0, in
the short-range scaling limit, in which the distancex of the
two energy levels becomes small, andN goes to infinity,
with fixed Nx. We had also briefly discussed then-point
function in @10#. The main steps are recalled here; the u
versality ofP(s) follows immediately.

In Sec. VI we establish some properties of this kernel, a
show that it does satisfy some necessary consistency co
tions.

II. LEVEL-SPACING DISTRIBUTION P„S…
FOR GENERALIZED GUE ENSEMBLES

We return to the single random matrix case with a pro
ability

P~H !5
1

Z
e2N Trf ~H ! ~2.1!

,
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56 265EXTENSION OF LEVEL-SPACING UNIVERSALITY
and integrate out the unitary degrees of freedom. The res
ing probability distribution for theN eigenvalues ofH is @2#

PN~x1 , . . . ,xN!5C)
i, j

~xi2xj !
2e2N( i51

N f ~xi !. ~2.2!

The n-point correlation functionRn(x1 , . . . ,xn), is defined
as

Rn~x1 , . . . ,xn!5
N!

~N2n!! E2`

`

•••E
2`

`

dxn11•••dxNPN

3~x1 , . . . ,xN!. ~2.3!

Following Mehta@2#, we introduce the orthogonal polynom
als fk(x) with respect to the measure exp@2Nf(x)#. Then
Rn is given by the determinant,

Rn~x1 , . . . ,xn!5det@KN~xi ,xj !# i , j51, . . . ,n . ~2.4!

in which the kernelKN(x,y) is expressed as a sum of o
thogonal polynomials

KN~x,y!5
1

N
e2~N/2!„f ~x!1 f ~y!…(

k50

N21

fk~x!fk~y!. ~2.5!

For instance, the pair correlation function, then52 case,
becomes

R2~x1 ,x2!5r~x1!r~x2!2KN~x1 ,x2!KN~x2 ,x1! ~2.6!

in which the density of statesr(x) is the diagonal part of the
kernelr(x)5KN(x,x). With our normalization convention
the density of stater(x) has a support of finite extension i
the largeN limit.

In the short-distance scaling limit,KN(x1 ,x2) becomes
@11–13#

KN~x1 ,x2!.
sinFpN~x12x2!rX~x11x2!

2
CG

pN~x12x2!
, ~2.7!

for N→`, x12x2→0 and finiteN(x12x2). The universality
of Eq. ~2.7! with respect to the functionf (x) which charac-
terizes the probability measure is thus manifest. The univ
sality of the level-spacing distributionP(s) follows at once.

Indeed, following Mehta@2#, we first compute the prob
ability E(u) that the interval@2u/2,u/2# does not contain
any of the pointsx1 , . . . ,xN in the largeN limit. It is thus
obtained by integrating theN variables ofPN(x1 , . . . ,xN)
outside the interval@2u/2,u/2#:

E~u!5E
out
•••E

out
PN~x1 , . . . ,xN!dx1•••dxN , ~2.8!

where the integrals are performed outside the reg
@2u/2,u/2#;

E
out
dx5S E

2`

`

2E
2u/2

u/2 D dx. ~2.9!
lt-

r-

n

We may thus expressE(u) in terms of theRn’s by using
systematically Eq.~2.9! for all theN variables

E~u!512NE
2u/2

u/2

r~x!dx1
N2

2! E2u/2

u/2 E
2u/2

u/2

R2~x,y!dxdy

1•••. ~2.10!

The natural scale for the level spacingu is of order 1/N since
in the large N limit the support of the density of state
finite. We thus consider the short-distance scaling limit,
which u goes to zero and N to infinity, with fixedNu. In that
scaling limit

NE
2u/2

u/2

r~x!dx5Nur~0!1O~1/N!. ~2.11!

We thus define the scaling variable

Nur~0!5s. ~2.12!

The next terms of Eq.~2.10! are obtained in this limit by the
change of variables

Nxr~0!5x8. ~2.13!

Then, in the scaling limit,

N2E
2u/2

u/2 E
2u/2

u/2

R2~x,y!dx dy5E
2s/2

s/2 E
2s/2

s/2

R̃2~x8,y8!dx8dy8,

~2.14!

with

R̃n~x1 , . . . ,xn!5det@K̃~xi ,xj !# i , j51, . . . ,n , ~2.15!

in which

K̃~y1 ,y2!5
sin@p~y12y2!#

p~y12y2!
. ~2.16!

In this scaling limit we thus obtain

E~s!5 (
n50

`
~21!n

n! E
2s/2

s/2

•••E
2s/2

s/2

dx1 , . . . ,dxn

3det@K̃~xi ,xj !# i , j51, . . . ,n . ~2.17!

From this representation it is easy to expandE(s) for small
s; for instance,

E
2s/2

s/2 E
2s/2

s/2

R̃2~x,y!dx dy5
p2

36
s42

p4

675
s61O~s8!,

~2.18!

and since then53 term of Eq.~2.17! is easily shown to be
of orders7 for small s, we find

E~s!512s1
p2

36
s42

p4

675
s61O~s7!. ~2.19!

One can also introduce the eigenvaluesl i(s) of the integral
equation for the kernelK̃ on the interval@2s/2,1s/2#,
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266 56E. BRÉZIN AND S. HIKAMI
E
2s/2

s/2

K̃~x,y!c i~y!dy5l ic i~x!. ~2.20!

From Eq.~2.17! we can write

E~s!5)
i51

`

~12l i !5det@12K̃#. ~2.21!

For smalls, a perturbational expansion using Legendre po
nomial gives the same result as Eq.~2.19!. The level-spacing
probability distributionP(s) is now obtained fromE(s)

P~s!5
d2

ds2
E~s!. ~2.22!

Through this representation, we find that the universality
P(s) results from two sources;~i! the n-point correlation
Rn is expressed as the determinant of a kernelKN(xi ,xj ), ~ii !
the kernelKN(x,y) has a universal short-distance behav
K̃ in the short-distance scaling limit.

III. DETERMINISTIC PLUS RANDOM HAMILTONIAN

We now consider a HamiltonianH5H01V, whereH0 is
a given, nonrandom,N3N Hermitian matrix, andV is a
random Gaussian Hermitian matrix. The probability distrib
tion P(H) is thus given by

P~H !5
1

Z
e2~N/2!TrV2

5
1

Z8
e2~N/2!Tr~H222H0H !. ~3.1!

We are thus dealing with a Gaussian unitary ensem
modified by the external matrix sourceH0, which breaks the
unitary invariance of the measure. In previous works@9,10#,
we have already discussed the density of state, and the
level correlation function. For completeness, we repeat h
the basic steps. The density of stater(l) is

r~l!5
1

N
^Trd~l2H !&

5E
2`

1` dt

2p
e2 iNtlU~ t !, ~3.2!

whereU(t) is the average ‘‘evolution’’ operator

U~ t !5^TreiNtH&. ~3.3!

We first integrate over the unitary matrixv which diagonal-
izesH in Eq. ~3.1!, and without loss of generality we ma
assume thatH0 is a diagonal matrix with eigenvalue
(e1 , . . . ,eN). This is done with the help of the well-know
Itzykson-Zuber integral@7#,

E dvexp~TrAvBv†!5
det@exp~aibj !#

D~A!D~B!
, ~3.4!

whereD(A) is the Van der Monde determinant construct
with the eigenvalues ofA
-

f

r

-

le

o-
re

D~A!5)
i, j

N

~ai2aj !. ~3.5!

We are then led to

U~ t !5
1

Z8D~H0!
(
a51

N E dx1•••dxNe
iNtxaD~x1 , . . . ,xN!

3expS 2
N

2( xi
21N( e ixi D . ~3.6!

The normalization is fixed by

U~0!5N. ~3.7!

The integration over thexi ’s may be done easily, if we note
that

E dx1•••dxND~x1 , . . . ,xN!expS 2
N

2( xi
21N( bixi D

5D~b1 , . . . ,bN!expSN2( bi
2D . ~3.8!

Puttingbi5e i1 i tda,i , we obtain

U~ t !5 (
a51

N

)
gÞa

N S ea2eg1 i t

ea2eg
De2~Nt2/2!1Nitea. ~3.9!

The sum overN terms in Eq.~3.9! may then be replaced b
a contour integral in the complex plane,

U~ t !5
1

i t R du

2p i )g51

N S u2eg1 i t

u2eg
De2~Nt2/2!1 i tNu.

~3.10!

The contour of integration encloses all the eigenvalueseg .
The Fourier transform with respect tot gives the density of
state in the presence of an arbitrary external sourceH0 and
for finite N.

In the case of the two-point correlation function, we ha

R2~l,m!5 K 1NTr~l2H !
1

N
Tr~m2H !L . ~3.11!

By using integral representations for the twod functions, the
two-point correlation functionR2(l,m) is expressed as th
Fourier transform ofU(t1 ,t2),

U~ t1 ,t2!5^TreiNt1HTreiNt2H&. ~3.12!

Again using the Itzykson-Zuber formula to integrate over t
unitary group, we obtain

U~ t1 ,t2!5 (
a1 ,a251

N E )
i51

N

dxi
D~x!

D~H0!

3e2N([ ~1/2!xi
2
2xie i ]1 iN~ t1xa1

1t2xa2
!. ~3.13!

After integration over thexi ’s, we have
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U~ t1 ,t2!5 (
a1 ,a2

)
i, j

@e i2e j1 i t 1~d i ,a12d j ,a1
!1 i t 2~d i ,a22d j ,a2

!#

)
i, j

~e i2e j !

eNit1ea1
1Nit2ea2

2~N/2!t1
2
2~N/2!t2

2
2Nt1t2da1 ,a2. ~3.14!

This term is devided into two parts;a15a2 anda1Þa2 cases,

U~ t1 ,t2!5(
a1

)
i, j

@e i2e j1 i ~ t11t2!~d i ,a12d j ,a1
!#

~e i2e j !
eNi~ t11t2!ea1

2~N/2!~ t11t2!2

1 (
a1Þa2

„ea1
2ea2

1 i ~ t12t2!…

ea1
2ea2

)
gÞ~a1 ,a2!

~ea1
2eg1 i t 1!

ea1
2eg

~ea2
2eg1 i t 2!

ea2
2eg

eNit1ea1
1Nit2ea2

2~N/2!~ t1
2
1t2

2
!. ~3.15!

Fourier transform of the first term becomesd function @14#, and can be neglected forR2(l,m) for lÞm. The double sum in
Eq. ~3.15! may be written again as an integral over two complex variables

U~ t1 ,t2!5
1

~ t1t2!
e2~N/2!t1

2
2~N/2!t2

2 R dudv
~2p i !2

eNit1u1Nit2v
„u2v1~ i t 12 i t 2!…~u2v !

~u2v1 i t 1!~u2v2 i t 2!
)
g51

N S 11
i t 1

~u2eg! D S 11
i t 2

~v2eg! D .
~3.16!
nd
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g

e
s

la-
he
-
ons.
mit

o-

he

-

f
m,
im
Noting that

12
t1t2

~u2v1 i t 1!~u2v2 i t 2!
5
„u2v1 i ~ t12t2!…~u2v !

~u2v1 i t 1!~u2v2 i t 2!
,

~3.17!

we find that Eq.~3.16! is a sum of the disconnected term a
a connected part. We know Fourier transformU with repect
to t1 andt2 and shift the integrations variables. By the shi
t1→t11 iu, andt2→t21 iv, we easily see thatR2(l,m) is a
232 determinant, namely, that

R2~l,m!5KN~l,l!KN~m,m!2KN~l,m!KN~m,l!,
~3.18!

with the kernel

KN~l,m!5E dt

2p R dv
2p i )g51

N S eg2 i t

v2eg
D

3
1

v2 i t
e2~N/2!v22~N/2!t22Nitl1Nvm.

~3.19!

Note the similarity of the determinantal structure found h
with that of the zero source case given in Eq.~2.4!.

In @9#, this kernelKN(l,m) was examined in the scalin
limit, large N, but fixed N(l2m). In this limit one can
evaluate the kernel~3.19! by the saddle-point method. W
have to assume here that the distribution of eigenvalue
H0 posseses a limit whenN goes to infinity. Namely, we
assume that

r0
~N!~l!5

1

N(
i51

N

d~l2e i ! ~3.20!
e

of

has a finite limit whenN goes to infinity. If this assumption
is relaxed, it is clear that a different behavior of the corre
tions could take place; for instance, if the support of t
e i ’s was growing rapidly withN, one would presumably ob
serve a crossover to a Poissonian regime for the correlati
The result was found to be, up to a phase factor that we o
here,

KN~l1 ,l2!52
1

py
sin@pyr~l1!#, ~3.21!

wherey5N(l12l2). Apart from the scale dependence pr
vided by the density of stater, the two-point correlation
function has a universal scaling limit, i.e., indepent of t
deterministic partH0 of the random Hamiltonian.

IV. DETERMINANT FOR THE N-POINT CORRELATION
FUNCTION

Then-point correlation functionRn(l1 , . . . ,ln) is given
by

Rn~l1 , . . . ,ln!5
1

NnK )
i51

n

Trd~l i2M !L . ~4.1!

If we put the constraints that alll i are different, this expres
sion conincides with Eq.~2.1!. When somel i become the
same, we have extrad functions as shown in@9#. Therefore,
we assume alll i are different.

Without an external source, thisn-point correlation func-
tion is expressed in terms of the kernelKN(l i ,l j ) as @2,4#

Rn~l1 , . . . ,ln!5det@KN~l i ,l j !#, ~4.2!

where i , j51, . . . ,n. This result was derived by the use o
the orthogonal polynomials. In the external source proble
we cannot apply the orthogonal polynomial method. Our a
is to find a proof of Eq.~4.2! for the external source case.
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Using the Itzykson-Zuber formula of Eq.~3.5!, we have

Rn~l1 ,•••,ln!5
1

Nn (
a iÞa j

E dt1•••dtn
~2p!n

D~B!

D~H0!

3eN/2(bi
2
1 i(tklk, ~4.3!
where

bk5ek1 i ~ t1dk,a11•••1tndk,an!. ~4.4!

Using the contour-integration representation, we get
n.

the
n

Rn5E dt1•••dtn
~2p!n

e2~N/2!(tp
2

1 iN(tplp R du1•••dun
~2p i !n

eNi(tpup)
p51

n

)
a51

N S 11
i t p

up2ea
D)

p

n
1

tp
)
p,q

@up2uq1 i ~ tp2tq!#~up2uq!

~up2uq1 i t p!~up2uq2 i t q!
.

~4.5!

Whenn52, this reduces to the previous expression~3.16!. When make a shift of the variablestp : tp→tp1 iup , then we get

Rn5E dt1•••dtn
~2p!n

R du1•••dun
~2p i !n

e2~N/2!(tp
2

2~N/2!(up
2

1(lp~2 iNtp1Nup!)
p51

n

)
a51

N S 2ea1 i t p
up2ea

D
3 )

p,q
S i t p2 i t q

2uq1 i t p
D ~up2uq!

~up2 i t q!
)
p51

n
1

~ tp1 iup!
. ~4.6!

We recognize in Eq.~4.6! a Cauchy determinant,

detF 1

ai2bj
G
i , j51, . . . ,n

5~21! [n~n21!/2]
P i, j~ai2aj !~bi2bj !

P i , j~ai2bj !
, ~4.7!

if we identify ak to i t k , andbk to uk in Eq. ~4.6!. Then,Rn is given by

Rn5E dt1•••dtn
~2p!n

R du1•••dun
~2p i !n

e2~N/2!(tk
2
2~N/2!(uk

2
1(lk~2 iNtk1Nuk!)

k51

n

)
a51

n S 2 i t k1ea

ea2uk
DdetS 1

i t i2uj
D

5E dt1•••dtn
~2p!n

R du1•••dun
~2p i !n

e2~N/2!(tk
2
2~N/2!(uk

2
1(lk~2 iNtk1Nuk!detF )

a51

N
2 i t i1ea

~ i t i2uj !~ea2uj !
G . ~4.8!

Using the expression for the kernel of Eq.~3.19!, we obtain

Rn~l1 , . . . ,ln!5det@KN~l i ,l j !# i , j51, . . . ,n . ~4.9!

We could thus prove the determinantal form of then-point correlation function for a deterministic plus random Hamiltonia

V. THE PROPERTIES OF THE KERNEL

As we have seen in Eq.~4.9!, then-point correlation functionRn is expressed by the determinant in the presence of
external source. When we integrate out the variablesxl11 , . . . ,xn of Rn(x1 , . . . ,xn), we obtain the one-point correlatio
functionRl(x1 , . . . ,xl). Since we have Eq.~4.9!, the necessary consistency condition for this result is

E
2`

1`

dm KN~l,m!KN~m,n!5KN~l,n!. ~5.1!

This property is verified easily by the contour-integral representation of the kernelKN(l,m) given in Eq.~3.19! @10#. We have

E
2`

`

KN~l,m!KN~m,n!dm5E
2`

` dt1dt2
~2p!2

R du1du2
~2p i !2)g

S eg1 i t 1
u12eg

D S eg1 i t 2
u22eg

D 1

~u11 i t 1!~u21 i t 2!

3e2~N/2!~u1
2
1u2

2
1t1

2
1t2

2
!2 iNt1l2 iNt2m2Nu1m2Nu2n. ~5.2!
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56 269EXTENSION OF LEVEL-SPACING UNIVERSALITY
Integration overm, after the shiftt2→t21 iu1, gives ad
function for t2, and the contour integral overu1 around the
poleu152 i t 1 reconstructsKN(l,n).

We also observe the kernelKN(l,m) hasN eigenvalues
equal to one, with Hermite polynomials as eigenfunctio
since, forn,N,

E
2`

`

KN~l,m!Hn~ANm!e2~N/2!m2
dm5Hn~ANl!e2~N/2!l2,

~5.3!

with H0(x)51, H1(x)5 x, H2(x) 5 x221, etc. This prop-
erty may also be easily verified through the conto
integratal representation. Forn.N21, Eq. ~5.3! does not
hold. The right hand side of Eq.~5.3! becomeseg dependent.
When the external sourceeg goes to zero, the right hand sid
of Eq. ~5.3! is vanishing forn.N21. This is of course
related to the fact that the kernel is then expressed as a fi
sum of Hermite polynomials.

VI. SUMMARY AND DISCUSSION

In the preceding section, we have proved that
n-point correlation function is expressed by the kern
K(x,y), as in the absence of an external source. In the sh
distance limit, in which (l2m)N is kept fixed, the kerne
KN(lp ,lq) takes a universal form, and then-point correla-
tion becomes universal~up to a rescaling by the density o
stater). As we have seen in Sec. II, the level-spacing pro
ability distributionP(s) is given by an integration over th
n-point correlation functionRn(l i , . . . ,ln). Therefore, in
the short-distance scaling limit,P(s) has a universal form
independent of the deterministic part.
th
s

-

ite

e
l
rt-

-

We have assumed throughout this work that the densit
state is finite, of order one, in the energy range that we
considering. We have discussed the level-spacing probab
P(s) for two levels centered around the enregy zero. If
considered instead two levels centered around an en
E0, i.e., an interval@2s/21E0 ,s/21E0#, the behavior of the
kernelKN(l,m) remains universal, apart from the scaling b
the the density of stater(E0)instead ofr(0). Therefore, we
still have the same universal spacing dsitributionP(s) for an
arbitrary energyE0 as long asr(E0) remains of order one.

We have also assumed that the eigenvalues of the d
ministic termH0 are inside the support of the asymptot
smooth density of stater. When the eigenvalues are wide
separated, the density of state shows an oscillatory beha
In such cases, the two-level correlation function, or the k
nelKN(l,m) does not approach, in the scaling limit, the si
kernel, and a universal form forP(s) is not expected@15#.
This is reasonable, since we know that when the rand
potential V increases in comparison with the unperturb
deterministic termH0, we crossover to a universal behavi
independent of the initial deterministic term.

Finally we have found two kinds of universality: eithe
H050 and the distribution ofH is non-Gaussian, orH0 is
nonzero andV is Gaussian. It is tempting to conjecture th
this generalizes to non-Gaussian problems with a nonz
source as considered in the case of the two-level correla
function @11,12,16#, or to the time-dependent case@10#.
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