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Extension of level-spacing universality
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In the theory of random matrices, several properties are known to be universal, i.e., independent of the
specific probability distribution. For instance, Dyson’s short-distance universality of the correlation functions
implies the universality ofP(s), the level-spacing distribution. We first briefly review how this property is
understood for unitary invariant ensembles and consider next a HamiltehiaH,+V, in which H, is a
given, nonrandomiN X N matrix, andV is an Hermitian random matrix with a Gaussian probability distribu-
tion. The standard techniques, based on orthogonal polynomials, which are the key for the understanding of the
Ho=0 case, are no longer available. Then using a completely different approach, we derive closed expressions
for the n-point correlation functions, which are exact for finle Remarkably enough the result may still be
expressed as a determinant of mxn matrix, whose elements are given by a kerigh,u) as in the
Hy=0 case. From this representation we can show that Dyson’s short-distance universality still holds. We then
conclude thaP(s) is independent oH. [S1063-651X97)06207-1

PACS numbdis): 05.45+b, 05.40+]j

[. INTRODUCTION the scaling limit in whichN goes to infinity, the distance
between two neighboring eigenvalues goes to zero, and
s=Nx is held fixed.

In the third section we consider a Hamiltonian which is
the sum of a given deterministic pait, and of a random

Many years ago Wign€rl] introduced the level-spacing
probability distributionP(s), in his discussion of nuclear
energy levels. The exact form &f(s) was found later in the
theory of random matrices for the Gaussian unitary ensembl : : . B I
(GUB) [2-4]. This level-spacing probability distribution Sotennalv with a Gaussian probability distribution. The

i, ' . : measure is not unitary invariant, but one can still write the
P(s) was empirically found to be universal in many different Y

cases, for instance, non-Gaussian probability distributions dprobability distribution for the eigenvalues bf through the
e ' P y . 'S Qlell-known Itzykson-Zuber integral7]. Generalizing a
band matricegin which case the measure is not unitary in-

variany, and even for problems of aa priori different na- method introduced by Kazakd@] for the density of eigen-

tre, such as the level spacing of the zeros of the Rieman%alues’ we write a representation of thdevel correlation
¢ function [2.5.6], which is known to coincide with that of unction, in terms of an exact and explicit integral over 2

the GUE variables. Then one discovers that an amazing algebraic

In Sec. I, we first review how the universality &(s) structure allows one to express again thipoint function in

. : . X : terms of a determinant of amxn matrix. The matrix ele-
has been derived for non-Gaussian unitary invariant en- . . o

. . o 7 ments are given by a kernel which has an explicit represen-
sembles, in which the probability measure is given by

tation as an integral over two variables. In a previous paper
[9], we had already discussed the two-level correlation func-
tion of this Hamiltonian through the same method, and we
P(H)= Ee—NTrf(H)' (1.1  had shown that the behavior of this correlation function is
z indeed universal, i.e., independent of the Hamiltortigy) in
the short-range scaling limit, in which the distancef the
two energy levels becomes small, aNdgoes to infinity,
where f(x) is an arbitrary polynomial. One first integrates with fixed Nx. We had also briefly discussed tmepoint
out the unitary group in order to obtain a probability distri- function in[10]. The main steps are recalled here; the uni-
bution for the eigenvalues di. It is then easy to show that versality of P(s) follows immediately.
the n-point function may be written as anx n determinant; In Sec. VI we establish some properties of this kernel, and
the matrix elements of this determinant are given by a kerne$how that it does satisfy some necessary consistency condi-
expressed in terms of orthogonal polynomials with respect téions.
the weight exp— Nf(x)]. Then the understanding of the rel-
evant asymptotic behavior of these polynomials at large or- Il. LEVEL-SPACING DISTRIBUTION P(S)
der allows one to prove the short-distance universality of this FOR GENERALIZED GUE ENSEMBLES

kernel. From there one can derive the universalit($) in
We return to the single random matrix case with a prob-

ability
*Unite propre du Centre National de la Recherche Scientifique,
Associe al’Ecole Normale Supeeure et al’Universite de Paris- P(H)= Ee_NTrf(H) 2.1)
Sud. Z '
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and integrate out the unitary degrees of freedom. The resuli?v/e may thus expresg(6) in terms of theR,’'s by using

ing probability distribution for theN eigenvalues oH is [2]

Pn(Xg, - - xn)=CJ] (xi—xj)ze’NziNzl fi) (2.2
i<j
The n-point correlation functiorR,(X4, . .. Xg), is defined
as
N!
Rn(xll e !Xn) (N n)'f f an+l dXNPN
XXy o v XN (2.3

Following Mehta[2], we introduce the orthogonal polynomi-
als ¢(x) with respect to the measure ¢xpNf(x)]. Then
R, is given by the determinant,

Ry(Xq1, ... Xp) =

detK (XI lXj)]Ij 1 (2-4)

in which the kernelKy(x,y) is expressed as a sum of or-
thogonal polynomials

N—-1

4N/2)(f(x)+f(y))k§_:0 d(X)d(y). (2.5

1
KN(X,Y):NG

For instance, the pair correlation function, the=2 case,
becomes
Ro(X1,X2) = p(X1) p(X2) = Kn(X1,X2) Kn(X2,X1) (2.6)
in which the density of statgs(x) is the diagonal part of the
kernel p(x) = Ky(x,x). With our normalization conventions
the density of state(x) has a support of finite extension in
the largeN limit.
In the short-distance scaling limiy(X;,X5) becomes

[11-13
X1+ X
Sir{WN(Xl_Xz)p(¥)
KN(X11X2)2 7TN(X1_X2) ’ (27)
for N— oo, x;—Xx,—0 and finiteN(x, —X,). The universality

of Eq. (2.7) with respect to the functiofi(x) which charac-

terizes the probability measure is thus manifest. The univer-

sality of the level-spacing distributioR(s) follows at once.
Indeed, following Mehtd2], we first compute the prob-

ability E(#) that the interval — 6/2,6/2] does not contain

any of the points¢q, ... Xy in the largeN limit. It is thus

obtained by integrating thdl variables ofPy(X1, ... Xn)
outside the interval — 6/2,6/2]:
E(0)=f J PN(Xl, . ..,XN)Xm"'dXN, (28)
out out

where the integrals are performed outside the region

[— 6/2,002];

(2.9

Jotie = [ e

systematically Eq(2.9) for all the N variables

012 012 (62
E(0)=1—NJ p(X) dx+—j J
- 612 012J — 012

+o.

>(X,y)dxdy

(2.10

The natural scale for the level spacifigs of order 1N since

in the large N limit the support of the density of state is
finite. We thus consider the short-distance scaling limit, in
which 0 goes to zero and N to infinity, with fixed 6. In that
scaling limit

012
Nf p(X)dx=N6p(0)+ O(1/N). (2.11
— 012
We thus define the scaling variable
N6Op(0)=s. (2.12

The next terms of Eq2.10 are obtained in this limit by the
change of variables
Nxp(0)=x". (2.13

Then, in the scaling limit,

012 012 s/2
f f Ry(x,y)dx dy—f f Ry(x',y")dx'dy’,
012

(2.19
with
ﬁn(X11 s vxn):de(R(Xi !Xj)]i,j:l,. Lono (213
in which
= sin7(y1—Y2)]
K(yq,Yo)= ——————7F—. 2.1
(Y1.Y2) (Y1—Ys) (2.16
In this scaling limit we thus obtain
(=1 [s2 si2
E(s)= 2, ( I) f f dxq, ... dx,
n=0 N: —s/2 —si2
XdetK(XH ])]l i=1,... n- (2-17)

From this representation it is easy to expat(@) for small
s; for instance,

s/2 2 ot . .
f_s/ Rz(x y)dx dy= —s - 755 +0(s®),
(2.18

and since then=3 term of Eq.(2.17) is easily shown to be
of orders’ for smalls, we find

2 4

— St 0(s
365 S (s").

E(s)=1—-s+ 675

(2.19

One can also introduce the eigenvalugés) of the integral
equation for the kernék on the interval —s/2,+s/2],
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si2 N
f s/zK(X'y) Li(y)dy=N;i(X). (2.20 AN =]] (a—a)). (3.5
- i<j
From Eq.(2.17) we can write We are then led to
E(s)=11 (1-\)=def1-K]. @2 Y= g ) f dx, - dxy @A (xy s - Xn)
- 0 a=1
For smalls, a perturbational expansion using Legendre poly- N
nomial gives the same result as £2.19. The level-spacing ><exp( - 52 xi2+ NE fiXi)- (3.6
probability distributionP(s) is now obtained fronE(s)
d2 The normalization is fixed by
P(s)= w=E(s). 2.2
(8)=ggE®) (2.22 U(0)=N. 37

Through this representation, we find that the universality ofrpe integration over th&’s may be done easily, if we note
P(s) results from two sourcesj) the n-point correlation  that

R, is expressed as the determinant of a kekygllx; ,X;), (ii)

the kernelKy(x,y) has a universal short-distance behavior N )
K in the short-distance scaling limit. f dxy- - - AXNA(X, - - X)X _EE XPHND bix;
N
Ill. DETERMINISTIC PLUS RANDOM HAMILTONIAN =A(by, b ex;{—E bi2 ‘ 3.9

We now consider a Hamiltoniad =Hy+V, whereH, is
a given, nonrandomNXN Hermitian matrix, andV is a Puttingb;, = € +it 8
random Gaussian Hermitian matrix. The probability distribu-
tion P(H) is thus given by

we obtain

a,in

€€ tit +it

6 —67

—(Nt2/2)+Nitea (3.9

1
P(H)= Ze—(N/Z)TrVZ

The sum oveN terms in Eq.(3.9) may then be replaced by
) a contour integral in the complex plane,

:?ef(NIZ)Tr(H ~2HoH) (3.1
du > [u— €,+it
We are thus dealing with a Gaussian unitary ensemble U= 2 i yHl (?
modified by the external matrix sourék,, which breaks the 7 (3.10
unitary invariance of the measure. In previous wdigd.0],

we have already discussed the density of state, and the tw@he contour of integration encloses all the eigenvalegs

level correlation function. For completeness, we repeat herghe Fourier transform with respect tagives the density of

—(Nt%/2)+itNu

the basic steps. The density of staig\) is state in the presence of an arbitrary external sottgeand
1 for finite N.
p(\)= —(Trs(\—H)) In the case of the two-point correlation function, we have
+o dt Ro(\,u) <1T()\ H)lT( H)> (3.1)
* . )= =Tr(N—H)—Tr(u— . .
=J — e INtyY(1), (3.2) 2B TN N
o 27T
) B o By using integral representations for the t&dunctions, the
whereU(t) is the average “evolution” operator two-point correlation functiorR,(\,u) is expressed as the
U(t) = (TreNtH). 3.3 Fourier transform ofJ(t,,t5),
U(ty,tp) =(TreNtuHTre!NtH)y, (3.12

We first integrate over the unitary matrix which diagonal-
izesH in Eq. (3.1), and without loss of generality we may
assume thatH, is a diagonal matrix with eigenvalues
(€1, ... ,eN)- This is done with the help of the well-known
Itzykson-Zuber integra]7],

Again using the Itzykson-Zuber formula to integrate over the
unitary group, we obtain

A(x)
. defexpab)] Uit t 2)1% ) iU YA
dwexp(TrAwBw') =———=—, (3.9
A(A)A(B) 2 .
Xe—NE[(l/Z)xi—xisi]+|N(t1xal+t2xa2). (3_13)
whereA(A) is the Van der Monde determinant constructed
with the eigenvalues oA After integration over the;’s, we have



56 EXTENSION OF LEVEL-SPACING UNIVERSALITY 267

I] [e—€+it1(80 = 8.0) +ita( 80— 8j.0)]
i<] ! ! i 2 Ni Ni N/2)t2— (NI2)t2—N
U(tl,tg): 2 e 't15a1+ Itzeazf( )’[lf( )sz t1to8 ay.ay, (3 14)

ez H (e—

i<j

This term is devided into two partg); = a, and a;# a, cases,

'_€J+|(t1+t2)(5l ay 5],(11)]

eNiltyFtp)e, —(N2)(ty +1p)?

U(tlv 2) Z H

ay i<] (ei_fj)
(€, — €, Fi(t;—ty) (€, —€,+ity) (€, —€,+ity) _
N E ag ay ag Y ay Y eN|t1ea1+Nltzeazf(le)(tng)' (3'15
ar#ap €a; ™ €ay y#(ay,az) €ay ™ €y Cap™ €y

Fourier transform of the first term becomé&dgunction[14], and can be neglected f&,(\,u) for A # w. The double sum in
Eqg. (3.15 may be written again as an integral over two complex variables

. . N . .
Uty ty)= o (N2 - (N2 3[; duqueNitlu+Nitzv (u_v+(!t1_'t2))(u._v) ( Ity 14 Ity )
' (tqty) (27ri) (U—v+ity)(u—v—ity) ;=1 (u—e,) (v—¢,)
(3.19
|
Noting that has a finite limit wherN goes to infinity. If this assumption
is relaxed, it is clear that a different behavior of the correla-
tit, U—v+i(t;—ty))(u—v) tions could take place; for instance, if the support of the
- (U—o+it)(U—v—ity) = (U—o+it)(U—v—ity) ’ €'s was growing rapidly withN, one would presumably ob-

(3.17)  Serve acrossover to a Poissonian regime for the correlations.
The result was found to be, up to a phase factor that we omit

we find that Eq(3.16) is a sum of the disconnected term and Nere;

a connected part. We know Fourier transfdthwith repect 1

tot, anc_itz and shift the_ integrations variables. By tht_—? shifts Kn(A 1 hp)=——siMmyp(\,)], 3.2)
t,—t,;+iu, andt,—t,+iv, we easily see tha,(\,u) is a Ty

2X2 determinant, namely, that wherey=N(\;—\5,). Apart from the scale dependence pro-

_ vided by the density of statp, the two-point correlation
Ra(N 1) = K MKk, ) = Kn(n, ) K, function has a universal scaling limit, i.e., indepent of the
(3.18 deterministic partH, of the random Hamiltonian.

with the kernel IV. DETERMINANT FOR THE N-POINT CORRELATION

FUNCTION
dv it
K\, p)= f 2my , (U_EJ byThe n-point correlation functiorR,(\ 1, ... ,\p) IS given
% _ e—(N/Z)vz—(N/Z)tz—Nit)\+Nv;L_ 1
v—it T N H Tro(A\j—M) 4.1

(3.19

If we put the constraints that all; are different, this expres-
Note the similarity of the determinantal structure found heresion conincides with Eq(2.1). When some\; become the

with that of the zero source case given in Eg.4). same, we have extré functions as shown if9]. Therefore,
In [9], this kernelKy(\,x) was examined in the scaling we assume alk; are different.
limit, large N, but fixed N(A—w). In this limit one can Without an external source, thispoint correlation func-

evaluate the kernel3.19 by the saddle-point method. We tion is expressed in terms of the ker{(\;,\;) as[2,4]
have to assume here that the distribution of eigenvalues of

H, posseses a limit wheN goes to infinity. Namely, we Ra(N 1, - o Ap) =defKn(Ni A )], (4.2
assume that

wherei,j=1,... n. This result was derived by the use of
LN the orthogonal polynomials. In the external source problem,
M= = sh—e 3.2 we cannot apply the orthogonal polynomial method. Our aim
Po (M) Nz’l (A—e) (3.29 is to find a proof of Eq(4.2) for the external source case.
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Using the Itzykson-Zuber formula of E3.5), we have  where

1
Ro(As Ao =

dt,---dt, A(B) .
by=et+i(t1d, +- - +1,0 . 4.4
i;aj J (2m"  A(Hp) k= €kt 1 (116 q, nOk,a,) (4.9

X eN/25b + i3t (4.3  Using the contour-integration representation, we get

n N . n i
Rn:fL'ilt”e—(N/z)xt +iNStoA, 3§ du,-- dnUn N,Etpupl—[ 0 |1+ 1 1 [up—uq+l.(tp—tq)](up—_uq).
(277) (27T|) p=1 a=1 U €, p t pp<q (up—uq+|tp)(up_uq_ltq)

(4.5

Whenn=2, this reduces to the previous expresdi8ri6. When make a shift of the variable§: tp—tp+iup, then we get

n:f dt---dt, é dul"'dune-(N/2)2t§—(N/2)2u§+z>\ |th+Nup)H H ( € tity
=1 a=1

(2m)" (27i)" Up— €,
it,—ity | (Up—Ug) 1o 1
[ P Yq
X - - —. 4.6
pl;[q (—uqultp (Up—itg)p=1 (tp+iuy) 4.6
We recognize in Eq(4.6) a Cauchy determinant,
1 IT;-i(aj—a;)(bj—b;)
de =(—1)[n(h-1)2] <J\™ ] J ’ 4.
{ai_bj ij=1,...n v IT; j(ai—by) @0
if we identify a, to it,, andby to uy in Eq. (4.6). Then,R, is given by
dt,---dt, [ du;---du, 2 2 . NN —itte, ( 1
_ —(N/2)St2— (N/2)SuZ+ Shp( —iNt+ Nuy)
o J @m)" 3£ @my © 11N I i L Py
N .
:f dt,---dt, i; du;-- ~dune (NI2)St2— (N/2)Su2+ SN (— iNt+ Nu) g —ltite, 4.9
(2m)" (27i)" a=1 (iti—uj)(e,—u)) |’ '
Using the expression for the kernel of E§.19, we obtain
Ra(Ngs « oo Np)=defKn(Ni A i j=1,. . n- 4.9

We could thus prove the determinantal form of tivpoint correlation function for a deterministic plus random Hamiltonian.

V. THE PROPERTIES OF THE KERNEL

As we have seen in Ed4.9), the n-point correlation functiorR,, is expressed by the determinant in the presence of the

external source. When we integrate out the varialiles, ... X, of Ry(Xq, ... X,), we obtain the one-point correlation
function Ri(x4, . .. ,X;). Since we have Ed4.9), the necessary consistency condition for this result is
+ o
f_ du KnON, ) Ky, v) = Ky(A, v). (5.)

This property is verified easily by the contour-integral representation of the Kegtal, ) given in Eq.(3.19 [10]. We have

(€y+it2) 1
U, — 67 (U1+it1)(U2+it2)

o © dt,dt, [ du;du,
f KN()\vM)KN(MvV)d/-L:j (271_)2 (277_')2
— o0 — o0 y

2,02, .2 .2 . )
><e*(N/Z)(U1+U2+t1+t2)*INtl)\*thzl,L*NUl,u*NUZV. (5.2)

6,},+it1
Ul_ 67
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Integration overu, after the shiftt,—t,+iu,, gives aé We have assumed throughout this work that the density of
function fort,, and the contour integral over; around the state is finite, of order one, in the energy range that we are
pole u;= —it; reconstructKy(\,v). considering. We have discussed the level-spacing probability

We also observe the kernkly(\,u) hasN eigenvalues P(s) for two levels centered around the enregy zero. If we
equal to one, with Hermite polynomials as eigenfunctionsconsidered instead two levels centered around an energy
since, forn<N, Eo, i.e., an interval —s/2+ E,,s/2+ E,], the behavior of the

kernelKy(\, ) remains universal, apart from the scaling by

* —(NR) 2y . _ —(NI2)A2 the the density of state(E,)instead ofp(0). Therefore, we

fﬂoKN()\”u)H"( \/N'“)e * du=Ha( \/N)\)e ' still have the same universal spacing dsitributi®(s) for an

(5.3 arbitrary energyg, as long asp(E) remains of order one.

_ ) ) We have also assumed that the eigenvalues of the deter-
with Ho(x) =1, Hi(X)= X, H(x) = x*—1, etc. This prop-  minjstic termH, are inside the support of the asymptotic
erty may also be easily verified through the contour-gmooth density of state. When the eigenvalues are widely
integratal representation. For>N—1, Eq. (5.3 does not  geparated, the density of state shows an oscillatory behavior.
hold. The right hand side of E¢5.3) becomes:, dependent. | sych cases, the two-level correlation function, or the ker-
When the external souras, goes to zero, the right hand side ne| K (), ) does not approach, in the scaling limit, the sine
of Eq. (5.3 is vanishing forn>N—1. This is of course ernel, and a universal form fd?(s) is not expected15].

sum of Hermite polynomials. potential V increases in comparison with the unperturbed
deterministic termH,, we crossover to a universal behavior
VI. SUMMARY AND DISCUSSION independent of the initial deterministic term.

In the preceding section, we have proved that theH Finally we have found two kinds of universality: either

n-point correlation function is expressed by the kernel g;grgnadng)ﬁsdgg:;ﬁgg Cl)tf-ilsIfelgnor][;r?a'?osilgrl;]jeg:luorelsthat
K(x,y), as in the absence of an external source. In the shor his generalizes to non-Géussian prob?ems wi:h a nonzero
distance limit, in which K —u)N is kept fixed, the kernel 9 ; : P .

: . source as considered in the case of the two-level correlation
Kn(Ap,Ag) takes a universal form, and timepoint correla-

tion becomes universdlip to a rescaling by the density of function[11,12,1§, or to the time-dependent cagED)].
statep). As we have seen in Sec. Il, the level-spacing prob-

ablllty dlstrlbuthn P(s) is given by an integration over .the ACKNOWLEDGMENTS
n-point correlation functionR,(\;, ... \,). Therefore, in
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independent of the deterministic part. project, and by the CREST of JST.
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